
0 
 

 
 
 
 
 
 
 
 
 

A Model of Multi-Store 



 1 

A Model of Multi-Store Shoppers’ Buying Decisions 
 
 
 

Abstract 
We propose an analytical model of multi-store shoppers buying items from their shopping lists; 
specifically, “common items” that are available at competing stores. Multi-store shoppers buy 
some common items at the first store they visit, others are deferred to a competing store. These 
buying decisions depend on the prices observed at the first store and uncertainty about savings if 
purchases are deferred to a competing store. Analysis of our model shows that, if multi-store 
shoppers enjoy psychological benefits (in addition to rational 
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1. Introduction 
 
Consider a grocery shopper’s purchase decisions. She goes shopping to buy certain items, which 

are usually recorded on a shopping list (Spiggle 1987, see Kahn and McAlister 1997, pp.118-9, 

for a discussion of shopping lists).  Given that shopping list, store choice models assume that the 

shopper visits whichever store minimizes her total cost of shopping; i.e., the cost of travel and 
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multi-store shoppers do not buy at the low price more often, given that most prior 
research assumes that the objective of multi-store shopping is to search for deals.  

• Second, our empirical data (again, see §4.1 for details) show that if the first store that a 
shopper visits offers a price that is less than or equal to the second store’s price, then the 
shopper buys at that low price 76.9% of the time. If, on the other hand, the first store that 
a shopper visits does not offer the low price (i.e., its price is higher than the price offered 
at the second store) then the shopper buys at the low price only 55.8% of the time.2 This 
analysis suggests that the order in which multi-store shoppers visit stores affects the
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implication is that uncertainty about prices at the second store affects multi-
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discounting independent of competitor
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primary grocery store, increasingly buying food and packaged goods at other stores and retail 

formats.  

Three existing literature streams are particularly relevant to multi-store shopping: 

marketing researchers have studied cherry-picking, or shopping for bargains across stores; 

economists have considered models of sequential search for grocery products; and social 

psychologists have discussed the psychological (i.e., non-economic) benefits of saving money. 

2.1. Cherry-Picking  

A number of recent studies have investigated cherry-picking--shopping for bargains across 

stores--focusing on who cherry-picks, how much they cherry-pick and how retailers’ pricing and 

store location decisions affect cherry-picking behavior. Note that the term “cherry-picking” 

implies that the motivation for multi-store shopping is to buy at a lower price; as we will explain 

in §3, our model of multi-store shopping allows for other motivations as well. 

Cherry-picking has been used in game theoretic models of the retailer/shopper 

interaction. For example, Lal and Rao (1997) developed a model that segments shoppers into 

those who are time constrained and those who cherry-pick. Dreze (1999) analyzed a segment of 

shoppers who are price sensitive with low travel costs and so can be induced to cherry-pick by 

retailer price deals. Both studies argue that cherry-pickers will travel to multiple stores to take 

advantage of price deals because of their low opportunity cost of time. Moreover, cherry-picking 

shoppers are generally assumed to be less profitable than other shoppers for retailers.  

Other cherry-picking studies have taken a more empirical approach. Fox and Hoch 

(2005) found that cherry-picking is materially important for retailers, 
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on average, and iii) is less likely to secure bargains. As a result, the primary store is not 

adversely affected by cherry-picking as much as the secondary store. Fox and Hoch also found 

evidence that cherry-picking trips are planned, with more than twice as much spent on such trips 

compared to single-store shopping trips. In terms of demographics, cherry-picking behavior was 

found to be positively associated with household size, home ownership and senior citizenship, 

but negatively associated with working adult females and income. The authors also found that, 

depending upon the shopper’s wage rate, cherry-picking is economically rational behavior for a 

substantial proportion of households. 

Talukdar, et al. (2010) investigated the profit impact of extreme cherry-picking on 

retailers, where extreme cherry-pickers were defined as those who generated a negative profit 

contribution at their secondary store--
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search skills, finding that both are positively related to the two dimensions of price search 

(including cherry-picking) and to shoppers’ savings from price search. These mavenism and 

perceived search skill findings suggest that psychological factors may affect search behavior and 

consequently support the inclusion of psychological benefits in our model of multi-store 

shopping behavior.  

2.2. Grocery Store Price Search 

In economics, there have been several studies of the search for information about frequently 

purchased goods across grocery stores (e.g., Stigler 1961). These studies assumed sequential 

se
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offers attractive assortments in categories of interest, then the customer might choose to visit the 

second store regardless of potential savings on common items. In this case, all travel costs would 

be treated as sunk costs, so the fixed cost associated with purchasing 
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psychological benefits from saving money; thus, the deferment decision is not influenced by the 

probability of realizing a savings. The REB shopper maximizes expected savings (across all 

items on the list), taking into account the fixed cost of a visit to Retailer 2 

 Max
λt

E λt
TQtdt{ }− k , (1) 

where dt is a vector of price differences, , Qt is a diagonal matrix of required 

purchase quantities, !! = 𝑑𝑖𝑎𝑔 𝑞!! , 𝑞!! , ⋯ , 𝑞!" , and E is the expectation operator. Observe that 

positive values in the price difference vector imply a positive contribution to savings by 

deferring purchase to Retailer 2. The REB shopper’s maximization of expected savings in (1) 

implicitly assigns λit = 1 for each product where E(dt) > 0 and λit = 0 otherwise. Because multi-

store shoppers visit both retailers by definition, 
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these decision weight functions are nonnegative and strictly monotone increasing. These 

assumptions ensure that, all things being equal, i) the PB+REB shopper is more likely to defer 

item purchases if the expected savings of doing so is greater, holding the probability of realizing 

a savings fixed; and ii) the shopper is more likely to defer item purchases if the probability of 

realizing a savings (by deferring) is greater, holding the expected savings fixed. The 

mathematical program for this decision model in period t is 

 Max
λt

g E λt
TQtdt{ }− k( )+ h Pr λt

TQtdt > k{ }( ) , (2) 

where E λt
TQtdt{ }− k

 
is the expected savings from deferring a proportion of purchases  to 

Retailer 2 and Pr λt
T273 151.2568 48008.2T268 1 Tf (P) Tj ET Q q 0.03088816 0 0 0 384 3894 0 Tm /TT253 1 Tf03088816 3841

T273 151.2568 48008.2T268 1 Tf (P) Tj ET Q q 0.030881J E 0 0 0 384 3894 0 T1201 0 Tm /TT262 8816 3841T273 151.2568 48008.2T268 1ET  Q k
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where δt is the vector of expected price differences
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2.  for  

3.  For any  with , . 

4.  If , then . 

We provide a proof of these conditions in Appendix A. Observe that these conditions do not 

depend on the fixed cost k, a construct of the model which is neither measured nor calculated. 

Parts 1 and 2 of the theorem tell us that every item whose expected price is lower at 

Retailer 2, , should be purchased in some proportion at Retailer 2, while every item whose 

expected price is not lower at Retailer 2, +∉ tIi , should not be purchased at Retailer 2. Part 3 of 

the theorem defines the relationship between any two products that should be bought in some 

proportion at both retailers. Part 4 of the theorem specifies the relationship that must hold if the 

PB+REB shopper prefers purchasing item i in greater proportion than item j at Retailer 2. The 

necessary condition is that the ratio !it

qit" it
2  for item i must exceed the same ratio for item j. This 

is an intuitively appealing condition since it incorporates both expected savings and price 

uncertainty in a simple and parsimonious way. Moreover, it confirms the simple intuition that the 

PB+REB shopper should defer those purchases to the second retailer that have the greatest 

certainty of contributing to savings. To our knowledge, no existing models of decision-making 

under price uncertainty use this ratio. We note that it is similar to the Sharpe ratio used in 

financial portfolio theory, except that the denominator in our expression uses the variance, 

instead of the standard deviation, and includes a quantity scale factor. The quantity scale factor 

arises because buying larger quantities increases the expected contribution to savings but also, to 

a greater extent, the uncertainty of the contribution to savings by purchasing at Retailer 2. 
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Proposition 2 – For PB+REB shoppers, the decision to
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function as shown in Figure 1 and therefore estimable using a binary choice function such as 

logit or probit, both of which are appropriate and well supported for empirical applications
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visiting the second retailer are not necessarily symmetric. In Figure 2, the additional 

setup cost of going from Retailer A to Retailer B (the route shown in bold) is greater than 

the additional setup cost of going from Retailer B to Retailer A (the dotted route). 

Retailer A is nearly “on the way home” after visiting Retailer B whereas Retailer B is 

“out of the way” after visiting Retailer A.  Finally, note that the routing decision is 

dependent on the distributions of prices offered by the two retailers. The relationship 

between retailer pricing and the shopper’s optimal routing is examined in detail in 

Bhaskaran and Semple (2012). This study shows that differences in the skewness of 

retailers’ price distributions alone can materially affect a shopper’s expected purchase 

costs, resulting in different optimal routes. 

Place Figure 2 about here 
 
4. Empirical Demonstration 

In this section, we use actual common item purchases made by multi-store shoppers to 

demonstrate that some shoppers enjoy psychological benefits, in addition to the economic 

benefits, of saving money. Note that our objective is to provide a demonstration of the 

analytically-derived propositions in §3, not to conduct a generalizable test of shopping behavior. 

4.1. Data  

We use IRI panel data from the Chicago market over 104 weeks between October 1995 and 

October 1997. Panelists recorded the UPCs (uniform product codes) of all packaged goods 

products purchased on all trips to a wide variety of retailers using in-home scanning equipment, 

identifying the retailer by store chain rather than by individual store. Developing
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panelists in the dataset
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households in our final dataset, we have been intentionally conservative in identifying multi-

store shopping purchases that reflect the assumptions of our model. As mentioned above, 

limiting our dataset to experienced multi-store shoppers ensures that their shopping trips were 

planned in advance (Fox and Hoch 2005). Selecting common item purchases only if both stores 

were visited without intervening consumption ensures that the shopping list was not increased 

between visits. As a result of this conservative approach, the 873 purchases in the dataset are, to 

the extent possible, representative of our analytical model. And while our intention is simply to 

demonstrate that some multi-store shoppers enjoy psychological benefits, the large number of 

observations per household supports the reliability of our findings.
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included in our dataset are presented for comparison, and it appears that they shop considerably 

less than the multi-store shoppers in our dataset. We observe that the frequent multi-store 

shoppers in our dataset made 187.25 (= 43.80 + 143.45) total store visits while the other 

shoppers made only 64.02 (= 2.40 + 61.62) total store visits--nearly three times fewer. 

Place Table 2 about here 

4.2. Variable Definitions   

We carry forward the notation from the analytical model; however, our empirical analysis is 

conducted at the individual level so we will add a subscript for household. Accordingly, the 

dependent variable in our econometric model is the probability πhit that household h purchases 

common item i on trip t at 
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decision to defer purchase to Retailer 2 is an increasing function of the contribution to expected 

savings, divided by the product of the quantity and the contribution to variance of savings. For 

household h purchasing item i, the predictor is !hit

qhit" hit
2 . The two quantities qhitδhit  and 

!hit

qhit" hit
2  

will play a critical role in our empirical analysis.  

We assume that the shopper’s information about price savings comes from previous 

multi-store trips on which the household made purchases in the category. During those trips, the 

shopper would have access to comparative pricing information for common items in the 

category. Because they depend on shopping history, contributions to expectation and variance of 

savings for each common item are household-specific, hence the h subscript. Moreover, because 

the shopper observes the prices of common items at Retailer 1 before making deferral decisions, 

we assume that she uses this information to condition contributions to expected savings 
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where  is an indicator variable which takes the value 1 if item 



 26 

4.3.1. Model Forms. The decision weights βE and βP play a critical role in our analysis. Consider 

the following possible scenarios: 

• βE!0 but βP=0; in this case, all shoppers are motivated by the economic benefits, 

but not psychological benefits, of the expected saving money--the probability of 

deferring purchase to the second retailer will increase as the contribution to 

expected savings increases. 

• βP!0 but βE=0; in this case, all shoppers are motivated by both the psychological 

and economic benefits of the saving money--the probability of deferring purchase 

to the second retailer will increase as the ratio of contribution to expected savings 

divided by contribution to variance of savings increases. 

These scenarios raise the possibility that shoppers may differ in their motivations, the 

way they process information, and the way they make decisions. Accordingly, we will allow for 
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,)θ(dF)θ|y(L)y(L hh ∫=

),θ|y(Lα)y(L sh

S

s
sh ∑

1=
=

where the decision weights and category-specific store loyalty parameters now vary by segment. 

However, as stated above, we will never allow both βE and βP to be non-zero within a given 

segment. Rather, we align each segment with a specific motivation by setting one of these 

parameters to zero. 

4.3.2. Estimation. We model the probability that household h chooses to buy common item i 

from her shopping list on trip t at Retailer 1, the first retailer visited on that multi-store shopping 

trip, as  

 . (12) 

As discussed in §3.2, because the purchase decision function is approximately piecewise-linear, 

the logit is an appropriate model form for estimating the probability (for a detailed discussion, 

see Ben-Akiva and Lerman 1985, pp. 67-72).  

In general, the unconditional likelihood for a multi-store shopper with common item 

purchase vector yh can be written as 

  (13)
 

where L(yh|θ) is the conditional likelihood with parameters θ (=γ, βE, and βP), and F(•) is the 

mixing distribution. It can be shown that a continuous mixing distribution function F(•) can be 

consistently estimated with a finite number of S mass points (cf. Simon 1976), i.e.,  

  (14) 

where θs is the vector of parameters, and αs is the mixing proportion or segment share for 

segment s, such that 0"αs"1 and α1 + α2 + …. + αS=1. Parameters are estimated using both the 

EM algorithm and the Newton-Raphson method. To decrease the chance of local maxima 

solutions, we use multiple sets of random start values. Within each set of random start values, we 

perform a number of iterations and continue with the best solution until convergence. 

π hit =
eUhit

1+ eUhit



 28 

4.4. Empirical Results 

Table 3 provides a description of alternative model forms along with goodness of fit statistics 

and hit rates. Table 4 provides parameter estimates for the best fitting model. We use AIC3 

(Andrews and Currim 2003) and BIC (Schwartz 1978) to compare model fits.12  

Table 3 is divided into two sections. The first section considers model forms in which all 
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Because the price savings that a shopper may realize by deferring common item 

purchases is effectively a risky return, we estimate an alternative model for this decision which 

includes an additive risk term. Specifically, we assume that multi-store shoppers’ decisions to 

defer purchase of common items to Retailer 2 depend.2 (vi) 0.2wnifor
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were included. We selected this sample to test whether our empirical results 

depend on households’ multi-store shopping expertise.  

Robustness Sample B: This sample reflects a different assumption about how 

shoppers develop expectations about items’ contribution to price savings. 

Adopting a rational expectations approach, this sample incorporates the entire 

history of price differences between retailers, regardless of which prices the 

household might have observed. The implication is that multi-store shoppers’ 

common item purchase decisions are made as if the shoppers know the entire 

history of price differences for common items.  

In the case of both robustness samples, we fit all model forms described in Table 

3.  For both robustness samples, M3_1 was again the best-fitting model in terms of both 

goodness-of-fit and hit rate.  Interestingly, some patterns in the parameter estimates are 

noteworthy.  For Robustness Sample A, which imposed a stricter multi-store shopping 
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unbiased) over contribution to variance in savings (which has a downward bias) is overstated, 

with some highly influential observations due to the small denominator. This explains the weaker 

relationships found in Robustness Sample B.  

5. Discussion, Limitations and Future Research 

We now return to the multi-
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Appendix A 
 

Proof of Theorem 1. Because ∑
+∈

>−
tIi

i ti t kq 0δ , consider the solution 1=itλ  for all +∈ tIi , and 

0=itλ  for +∉ tIi  . ∑
+∈

>−
tIi

i ti ti t kq 0δλ  for this solution. Observe that a solution with positive expected 

savings dominates all solutions with non-positive expected savings, i.e., both g  and h  are larger with 

positive expected savings. We may therefore assume that ∑
+∈

>−
tIi

i ti ti t kq 0* δλ  in any optimal solution 

vector *
tλ . 

 Now we show that 0* =itλ  for all +∉ tIi . Suppose this were not the case, and 0* >itλ  for some 

+∉ tIi . Then construct a new vector '
tλ  as follows: *'

jtjt λλ =  for ij ≠ , 0' =jtλ  for ij = . Observe  (a) 

tt
T

ttt
T

t QQ δλδλ  * ' > , (b) 0 * ' <−<− tt
T

ttt
T
t QkQk δλδλ , and (c) * *' '

tttt
T

ttttt
T
t QQQQ !!!! "<" . 

Observation (a) implies g  will increase for the new solution '
tλ . Observations (b) and (c) imply the 

argument of Φ  will decrease, and so h  will increase. This contradicts the optimality of *
tλ  and implies 

0* =itλ  for all +∉ tIi . This proves part 1 of the theorem. 

We now show that 0* >itλ  for all +∈ tIi  . Because ∑
+∈

>−
tIi

i ti ti t kq 0* δλ , at least one component 

of the optimal solution is positive.  Let that component be 0* >itλ  +∈ tIi . Now suppose  for 

some (other) item +∈ tIj
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Observe that h ’s argument is ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Σ

−
Φ−

tttt
T
t

tt
T
t

QQ
Qk

λλ

δλ1 . The term tt
T
t Qk δλ−  in the numerator 

of Φ ’s argument is identical for 'λ  and *λ  (it’s the negative of expected savings). However, the 

denominator of Φ ’s argument does change. In fact, straightforward algebra reveals the expression under  

the root changes by a net amount of 

    . 
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to preserve optimality. Dividing this expression by  
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Appendix B 
 

Numerical Study. 



 41 

µh = 0. The diagonal matrix of quantities Q simply scales the expected savings and variance of 

savings terms. It is set to the identity matrix. 

In conducting our numerical study, we systematically varied ωg, ωh, υg and υh. For each 

combination of slopes and exponents, we assumed a shopping list of fifty items. The 
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Appendix C 
 

The conditional contribution to expected price savings is computed as follows: 

        

, (C.1) 

where 

 is the unconditional contribution to expected savings, 

 is the expected price at Retailer 1, 

 is the covariance between the price at Retailer 1 and the contribution 

to savings from deferring to Retailer 2, and  

 is the variance of prices at Retailer 1. 

Similarly, the conditional contribution to variance of price savings is computed as follows 

, (C.2) 

where
 

 is the unconditional contribution to variance of savings. For our dataset, 

the conditional contributions to expectation and variance of savings were computed iteratively 
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Exhibit 1 
 

Summary of Notation 
Symbol Meaning 

 Item-level stochastic prices for Retailer 1 on trip t 

  Item-level stochastic prices for Retailer 2 on trip t 

 Proportion of item purchases at Retailer 2 on trip t !

 

         

 

Diagonal matrix of required quantities on trip 
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Figure 1 
The Optimal Proportion of an Item to Buy at the Second Retailer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Routes of Return Beginning with Different Retailers 
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Table 1 
Panelist Demographics 

 
 Multi-Store Shoppers 

Included in Dataset (n=51) 
Other Shoppers Not in Dataset 

(n=485) 
 mean std dev mean std dev 

Family Size 3.25 1.44 2.87 1.44 
Household Income (x$1,000) 53.4 25.9 51.3 26.3 
Working Adult Female 0.588 0.497 0.640 0.480 
College Education 0.216 0.415 0.202 0.402 
Home Owner 0.922

0.922
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Table 4 
Model M3_1 Parameter Estimates 

 
 Segment 1 Segment 2 
 Economic Benefit(62.36%) Psychological Benefit (37.64%) 

Variable 




